西陆书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

说实话,开创“机器学习”新领域,成为“深度学习”等技术路线的指路人,的确十分诱人,光是提出“人工神经网络”的概念,就足以名垂青史了。

但对于自己现在的水平,江寒心里还是很有数的,不谦虚地说,只能算略知一二。

前世虽然上过大学,学的却不是计算机专业,在编程和硬件领域,基本上全靠自己摸索,知识体系并不完善。

至于“人工神经网络”方面,前后只看了几本入门教材,外加在P站看了十几个系列视频教程。

一些重要的概念是清楚的,一些经典算法也是了解的,做一些简单的推演,应该也没什么大问题。

可许多公式背后的原理,当时就没能理解得十分深刻,到了现在,印象就更加模糊了。至于那些需要最先进的数学工具,才能完成的证明与推导……

在机器学习领域,“深度学习”被称作最具颠覆性的理论,以他目前掌握的这点儿皮毛,想要从无到有地开辟出一整条技术路线,难度可想而知。

可难就不搞了吗?

这是个难得的机遇,一定要好好把握才行。只是他还需要好好想一想,如何妥善运用那些“走私”来的知识。

既要充分发掘价值,也要注意合理性。起码拿出来的东西,要符合自己的人设,要找得到合理的解释,免得惹出什么不必要的麻烦……

江寒前思后想,终于做出了决定。

总之,必须尽快将“感知机”的概念抛出去,否则后续的一系列技术,全都得憋在脑袋里,没法拿出来见人。

只是这样一来,估计自己将来基本跑不掉一个“机器学习宗师”、“AI教父”、“人工神经网络创始人”之类的称号了……

别看“感知机”简单,却是“人工神经网络”的基石,很多“机器学习”算法,比如支持向量机(SVM)、深度学习、D-QLearning、生成对抗网络(GAN)……都是在其基础上才发展出来的。

在另一个世界,“感知机”的概念诞生于1957年,由Cornell航空实验室的FrankRosenblatt提出。

本质上是一个线性分类模型,用于解决二元线性分类问题,对应于输入空间中将实例划分为两类的分离超平面,是最简单的前馈人工神经网络。

好吧,说人话。

简单点说,感知机就是一个算法,通过大量训练,可以让电脑掌握某种规则,然后按照这种规则,将输入的数据分成两类。

如果输入的数据空间只有两个维度,将其视作平面直角坐标系,那么“感知机”的图像,其实就是一根直线。

“感知机”虽然简单,还是有点用的。

比如经过训练后,输入身份证号,就能帮你判断出是男是女;比如输入身高和体重,就能判断是否超重……

可能有人会问:随便写个程序,不是很简单就能实现这些功能吗?

但感知机的神奇之处,在于使用同样结构的程序,就能在很多领域里通用,而不用针对性编程。

这是机器学习和常规编程的本质区别。

感知机结构异常简单,工作原理也不复杂,但要想写成论文,也需要进行一些数学推导,以及前置理论。

“感知机”是建立在M-P模型的基础上的。

生物的神经细胞结构,主要由树突、突触、细胞体及轴突组成。单个神经细胞有两种状态:激活或者未激活。

神经细胞是否激活,取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。

当信号量总和超过了某个阈值时,神经元就会激活,产生电脉冲,电脉冲会沿着轴突并通过突触传递到其它神经元……

M-P模型就是模拟生物神经元的工作机制,创建出来的一种数学模型,采用阈值加权和与激活函数来控制信息传导过程,是生物神经元的一种简单抽象。

如果M-p模型的相关论文尚未发表,江寒就需要自己推导,并将其容纳进自己的论文里,否则难以自圆其说。

在写论文前,必须扫清障碍,接下来江寒就开始在网上寻找论文和线索。

功夫不负有心人,江寒几经周折,终于在一个学术网站,找到了那篇讲述M-P模型的论文:《Alogicalcalculusoftheideasimmanentinnervousactivity》。

这篇论文发表也有几十年了,却没在这个世界引起多少关注,引用数更是少得可怜,不过也幸好如此,否则哪轮得到自己来引领时代风骚?

江寒重生前就看过这篇论文,但那时候并没怎么细心揣摩,只是一扫而过,现在为了写出合格的SCI论文,自然要好好琢磨了。

他找来一个只写了两、三页的日记本,边刷论文边记录要点和心得,论文里遇到的术语,如果不十分理解,还要上网寻找文献和参考资料,还要确定来源是否可靠……

时间过得很快,转眼一个小时过去。

虽然说高三寝室并不会熄灯,但室友们总要睡觉的,老李那边也不能拖延太久。江寒看看重要问题基本解决得差不多了,就将手机上交,然后匆匆洗漱、上床休息。

第二天。

江寒醒得有点早,看看时间,还差几分钟才5点,就决定去操场上跑跑步。

上辈子疏于锻炼,身体素质始终没提上来,没到30岁就处于亚健康状态了,这一世他不想重蹈覆辙。

很快洗了把脸,然后来到操场。

到了地方才发现,刚刚5点就已经有不少人来锻炼了,跑步的,压腿的,打球的,玩单双杠的……

“像我这么勤奋的人,还真不少啊!”江寒感慨了一句,活动下关节,压了几下腿,然后开始慢跑。

运动时脑子也闲不下来,学习的事情、赚钱的事情、系统的事情,“神经网络”、“感知机”、“M-P模型”……各种念头纷至沓来。

千头万绪,此起彼伏。

江寒正心不在焉跑着,忽然发现前面不远处,有个女生也在慢跑,背影很惹眼,好像有点眼熟。

不一会儿,经过那个女生身边时,他才确认自己并没有认错,果然是夏雨菲。

有个大活人在身边跑步,夏雨菲自然不可能发现不了,但并没有做出什么反应,看都不看他一眼。

“早啊!”江寒笑容爽朗。

“早。”夏雨菲淡淡回了一句,眼光都没偏一下,自顾自跑着。

江寒只是出于礼貌,才打了个招呼,没想到她会回应。

声音还挺脆,就是神情十分冷淡,有点拒人于千里之外的意思……

大概这姑娘经常被搭讪,内心已经毫无波动,说不定还很不耐烦?

江寒笑了笑,不再理会,很快超了过去。

既然人家对他没兴趣,他就不会多打扰。

重活一世,他不会舔任何人,哪怕是夏雨菲。

西陆书屋推荐阅读:我在高武当学神中学:我的同桌是个大美女深情被辜负,我掀桌子你们哭什么缠情私宠:尤物小妻潜上瘾碰到手就会变成女孩子是什么鬼穿成科举文中炮灰小锦鲤新世界,你好全网都是我和前男友的CP粉逆战合金股海纵横之超级散户山野极品小村医四合院:年仅十八就让我养老?天命武神世界大杂烩,主角大乱斗女皇陛下在娱乐圈封神又是百年破事精英:赠予希妄开局报复初恋,搅黄她婚礼祸水之妻港片:我手下有一群猛男七个姐姐拿我挡煞续命?不伺候了前妻别担心,我已经考公上岸了我给地球修bug柯南世界里的巫师重生宠爱日常三分人七分鬼徒儿你无敌了,去下山吧!我在远东有个家异虫迷城:触手娘的养育手册升职当天老婆被人搂着出了酒店魔武天穹重生后我只想苟着没想拯救世界啊你凭什么觉得我要一直帮你买单?重生18:从借钱炒期货开始暴富开局系统跑路,我反派背景通天全球抗议:谁让他满世界卖军火的军痞农妃:将军家的小娇娘超级渔场主战朱门这个世界的迷宫花样太少了红警系统,助我纵横诸天!乡村里的女人幸运古神事务所综影:从老师是高育良开始四合院:穿越何雨柱截胡唐艳玲萌萌爱:甜甜青梅,好Q弹!分手当天,我的权色人生狂飙了顶流CP,从参加恋综开始全球资本家:从大学开始当首富重生之来到五百年后的天骄
西陆书屋搜藏榜:重生之我真的是老婆粉重生毒师废女左苏苏重生之盛宠娱乐女王我在古代带孩子的苦逼生活高冷系男神:不主动,不拒绝带着空间在逃荒路上养崽开局错把李世民当大表哥十八岁当上剑仙正常吗重生女帝的传说小生不可续善命斩恶魂,我在都市学洗魂!超级小神农给重生的虐文女主当妈后躺赢了农门福女:厨神王妃很嚣张重生在权力中心四合院:我有一个万界城青木世界四岁小太后:打小,就儿孙满堂!一岁觉醒,我为人族希望!红楼管家媳妇快穿:打脸白眼狼后我暴富了天命卦师穿成黑化大佬的小心肝开局神话入侵,我强化出无上神装机长大人,别来无恙!在年代文里扮演锦鲤福气包都市至强者降临坐我车的都是业界大佬一个网红的自我修养太子妃靠乌鸦嘴福运满满重生之骄兰信仰守护者金融弟国从乡村种田开始直播豪门暖婚之全能老公在下壶中仙开局获得轩辕剑,成就剑仙传奇名门暖婚,腹黑总裁攻妻不备蚀骨危情:陆少,别来无恙高调二婚最强渔夫:海岛奶爸重生九零之她成了人类首富娱乐:大学生演大佐,建议查三代和神仙青梅女友的超甜日常我渣了萧总后跑路了华娱之这个顶流要上网处处惹桃花:美男齐上钩魂穿废柴:我在蓝星做大圣爱情从再见开始绝世小神农
西陆书屋最新小说:男人女人的一千个故事天策龙帅之怒:娇妻血仇必报重生77:从打猎开始养活女知青冰山女总裁,求你放过我!我:首富他爹,被全网捉奸?社会大哥:从退伍军人开始都离婚了,必须浪起来说好只包养,校花你越来越过分了双穿清末:能用枪谁跟你拼国术卡牌,没人比我更懂它反派:听到心声后,女主总是撩我逆天命破万难高武:穿越后舔狗变成了杀神!农民小神医没钱御什么兽?山与林黑童话:从融合词条开始成神荒岛求生,获救才是劫难的开始我不仅是我一起拼个婚?他与她恋的契机全球高武:我的系统有点东西赶海捕鱼:别人干一天我一网爆仓高武:我有个自助流异能风流人生从打工开始冰山女总裁的全能保镖这些龙傲天真讨厌呀魅魔男妈妈才不想被强制爱都市之校园异能王我彩票中奖了,你们开始后悔了?问鼎青云:从退役功臣到权力之巅老家诡案密档执法变强,我灭门贵族世家人生半途之重生暴富圆梦李忘昔与往昔之旅权斗江湖路谜团,谜团天灾降临:契约异灵女皇亿哥带你,钓遍天下鱼江晓白的成长之旅直播种田女相纵横蓝星村,蓝星从此乱纷纷悸动的心跳胜过千言万语我一个流量明星,会写歌怎么了?从进山打猎到富可敌国被病娇财阀老婆绑走,我笑哭了全球首富从美女机器人卖身契开始大一刚入学,你单挑三千同学?寒门枭主让我冒充白月光,别真爱上我啊