西陆书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

二十来分钟后,大家锻炼完毕,回寝室稍作整顿,盥洗一番之后,就去了食堂。

由于早起运动的关系,每个人都多吃了一个馒头,精神头也好了不少。

饭后溜达了一会儿,几个人就结伴回班,上早读。

江寒端正地坐在座位上,拿出一个崭新的笔记本,开始写论文的第一稿。

先写下标题:《感知机:大脑信息存储和组织的概率模型》。

然后是摘要:“本文探讨了生物神经元的工作机制,并建立了一个简单的数学模型,以及探索了如何在机器学习中运用这个模型……通过对生物神经元的模拟,来解决线性可分的二分类问题。”

写完摘要后,又设了几个关键字,接下来就进入了正文。

第一部分是背景介绍,主要讨论生物神经元。

“要了解智能对知觉识别,泛化,回忆和思考的能力,首先我们要回答三个问题:生物系统如何感知或检测物理世界的信息?以什么形式存储或记住信息?存储或记忆中的信息如何影响识别和行为?

第一个问题属于感官生理学领域,而且人们对它已经有了可观的认识。第二和第三个问题,目前仍然只有大量的猜测,而且神经生理学提供的一些相关事实,还没有被整合成为一个可以被人们接受的理论……”

开宗明义之后,接下来,就可以详细讨论生物神经元的工作机制了。

足足用了两千来字,才写完这些罗里吧嗦的东西,最后下了结论。

“综上所述,不管什么信息被保留,都必须以某种方式,存储为特定响应的偏好,即信息包含在连接或关联中!”

接下来,进入下一环节,建立数学模型。

对于很多人来说,这是论文写作之中,最为困难的地方。

就算拿出“感知机”这种大杀器,江寒也并不担心,会被人怀疑是重生者。

除非屡见不鲜,否则谁会一碰到厉害的人,就怀疑是穿越、重生来的?

网上关于刘秀和王莽的段子,只是调侃和玩笑罢了。

但江寒仍然决定,将数学部分精简一下,尽量不涉及太高深的东西。

很多高等数学的东西,大学生学起来都挺费劲,自己一个普通高中生,凭啥能熟练运用?

除非能证明自己,的确是个不世出的天才,不然很难解释。

如果得到足够的学术点,将七维属性都加到10以上,那自己不想当天才都不可能。

可现在是起步阶段,还是稳一点的好。

“感知机”的工作逻辑很简单,本来也不是什么复杂的东西,只是表述上要稍微严谨一点。

前世刷过的那篇同名论文,大部分内容都是枯燥的论述,数学推导并不多,关于如何在计算机上实现,则基本没怎么讲。

这也不怪原作者,那个年代的计算机科学,本来就不怎么发达。

而且那篇论文的精华,也就是一个模型,一个原理。

至于编程实现,有了模型之后,那还不是Soeasy吗?

但现在是2012年,计算机技术已经取得了长足进步,足够将机器学习技术,运用于生产生活实践了。

所以,江寒将这篇论文的重点,放在了原理解析,以及如何实现上。

除了开头第一段,江寒并没有照抄原文,事实上,他也没那个本事。

那么长的论文,能记住大概思路,就相当不错了。

一个字不差背下来?江寒做不到啊!

根据自己对该技术的理解,江寒开始自由发挥。

先从最简单的情况,也就是单变量开始讨论。

“对于只含有1个输入信号xi的样本集T,我们期望找到一个线性函数y=wx+b,通过输入的数据xi和标签yi,确定其中的权重w和偏置b,其中权重w控制输入信号的重要性,而偏置b可调整神经元被激活的难易程度……”

江寒越写越顺,下笔如飞。

“……

我们定义损失函数如下:L(w,b)=?(1||w||)∑yi(w?xi+b),根据预设的学习率η,不断调整权重w和偏置b,直到损失函数到达极小点,即可得到可用的函数模型。

综上所述,学习算法如下:

首先选定训练数据集T=(x1,y1),(x2,y2),...,(xN,yN),yi∈{?1,+1}并指定一个学习率η(0<η<1);

1、任意选定权重w和偏置b;

2、读入数据点(xi,yi);

3、判断该数据点是否为误分类点,如果yi(w?xi+b)≤0则更新w=w+ηyixi;b=b+ηyi;

4、重复进行2、3步,直到没有误分类点。

此时,我们就获得了最佳的w和b,把它们代入y=wx+b,就得到了一个数学模型。”

感知机的学习过程,有个非常形象的比喻。

假设在一个棋盘上,有一堆黑子,和一堆白子,它们不相混合。

下面,拿一根细棍放上去。

我们希望这根棍子,能恰好将黑子和白子分开,棍子的一边全是黑子,另一边全是白子。

先把棍子随机扔到棋盘上,如果恰好将黑子和白子分开了,那就皆大欢喜,否则的话,就平移和调整棍子的角度,直到所有白子和黑子恰好分开……

那根棍子就是感知机,而挪动棍子的过程,就是感知机在学习。

棍子的角度和平移量,就是要寻找的参数w和b,也就是直线(棍子)在平面直角坐标系(棋盘)里的函数解析式。

瞧,够通俗易懂吧?

可惜写论文就不能这么写了。

感知机是人工神经网络的雏形,其中有个关键概念,叫激活函数,它决定了一个神经元是否有输出。

江寒在这里,用一个阶跃函数sign(x)作为激活函数,其定义为:x<0时函数取值-1;x≥0时函数值为1。

只要将sign换成sigmoid或者其他非线性函数,就是真正的单层前馈神经网络了。

但江寒并没有着急将sign之外的函数抛出去。

在第一篇论文里,最重要的是提出概念,其他东西完全可以在下一篇论文中再讨论。

能多水几篇,岂不更加美滋滋?

搞定了输入空间是1维的情况,接下来,就可以扩展到N维。

“对于一般情况,当有n个输入信号时,假设输入空间是x∈Rn,输出空间是y∈{+1,-1}。输入x∈X表示实例的特征向量,对应于输入空间的点;输出y属于Y表示实例的类别。

由输入空间到输出空间的如下函数:Ψ(x)=rsign(w1x1+w2x2+……+wnxn+b)=rsign(wTx+b),就可以称之为感知机,其中w∈Rn,b∈R为感知机算法的参数……”

在讨论完n个输入信号的情况后,江寒指出:

“模型建立之后,经过训练,就可以得到一组权重和偏置,这些参数确定了一个分离超平面(定义为n维空间上的一个n-1维子空间),此超平面可以将训练集中的数据,完全正确地分成两份,一份为正,一份为负(或者0,可以自己定义)。”

取得了模型的参数后,就可以把测试数据放进去,根据模型函数运算的结果,就能对数据进行分类。

感知器用处很广泛,几乎所有二分类问题,都可以用它来试一试。

当然,必须是线性可分的问题,线性不可分的问题,是不能用单层感知器解决的。

例如年龄和有没有生活经验,就不存在线性关系;长得帅不帅和学习好不好,也没有线性关系……

关于如何高效地判断数据是否线性可分,江寒还真研究过,只是这个题目比较大,三言两语说不清楚。

嗯……好像又能多水一篇或几篇SCI?

西陆书屋推荐阅读:我在高武当学神中学:我的同桌是个大美女深情被辜负,我掀桌子你们哭什么缠情私宠:尤物小妻潜上瘾碰到手就会变成女孩子是什么鬼穿成科举文中炮灰小锦鲤新世界,你好全网都是我和前男友的CP粉逆战合金股海纵横之超级散户山野极品小村医四合院:年仅十八就让我养老?天命武神世界大杂烩,主角大乱斗女皇陛下在娱乐圈封神又是百年破事精英:赠予希妄开局报复初恋,搅黄她婚礼祸水之妻港片:我手下有一群猛男七个姐姐拿我挡煞续命?不伺候了前妻别担心,我已经考公上岸了我给地球修bug柯南世界里的巫师重生宠爱日常三分人七分鬼徒儿你无敌了,去下山吧!我在远东有个家异虫迷城:触手娘的养育手册升职当天老婆被人搂着出了酒店魔武天穹重生后我只想苟着没想拯救世界啊你凭什么觉得我要一直帮你买单?重生18:从借钱炒期货开始暴富开局系统跑路,我反派背景通天全球抗议:谁让他满世界卖军火的军痞农妃:将军家的小娇娘超级渔场主战朱门这个世界的迷宫花样太少了红警系统,助我纵横诸天!乡村里的女人幸运古神事务所综影:从老师是高育良开始四合院:穿越何雨柱截胡唐艳玲萌萌爱:甜甜青梅,好Q弹!分手当天,我的权色人生狂飙了顶流CP,从参加恋综开始全球资本家:从大学开始当首富重生之来到五百年后的天骄
西陆书屋搜藏榜:重生之我真的是老婆粉重生毒师废女左苏苏重生之盛宠娱乐女王我在古代带孩子的苦逼生活高冷系男神:不主动,不拒绝带着空间在逃荒路上养崽开局错把李世民当大表哥十八岁当上剑仙正常吗重生女帝的传说小生不可续善命斩恶魂,我在都市学洗魂!超级小神农给重生的虐文女主当妈后躺赢了农门福女:厨神王妃很嚣张重生在权力中心四合院:我有一个万界城青木世界四岁小太后:打小,就儿孙满堂!一岁觉醒,我为人族希望!红楼管家媳妇快穿:打脸白眼狼后我暴富了天命卦师穿成黑化大佬的小心肝开局神话入侵,我强化出无上神装机长大人,别来无恙!在年代文里扮演锦鲤福气包都市至强者降临坐我车的都是业界大佬一个网红的自我修养太子妃靠乌鸦嘴福运满满重生之骄兰信仰守护者金融弟国从乡村种田开始直播豪门暖婚之全能老公在下壶中仙开局获得轩辕剑,成就剑仙传奇名门暖婚,腹黑总裁攻妻不备蚀骨危情:陆少,别来无恙高调二婚最强渔夫:海岛奶爸重生九零之她成了人类首富娱乐:大学生演大佐,建议查三代和神仙青梅女友的超甜日常我渣了萧总后跑路了华娱之这个顶流要上网处处惹桃花:美男齐上钩魂穿废柴:我在蓝星做大圣爱情从再见开始绝世小神农
西陆书屋最新小说:我这是,成大罗了?男人女人的一千个故事天策龙帅之怒:娇妻血仇必报重生77:从打猎开始养活女知青冰山女总裁,求你放过我!我:首富他爹,被全网捉奸?社会大哥:从退伍军人开始都离婚了,必须浪起来说好只包养,校花你越来越过分了双穿清末:能用枪谁跟你拼国术卡牌,没人比我更懂它反派:听到心声后,女主总是撩我逆天命破万难高武:穿越后舔狗变成了杀神!农民小神医没钱御什么兽?山与林黑童话:从融合词条开始成神荒岛求生,获救才是劫难的开始我不仅是我一起拼个婚?他与她恋的契机全球高武:我的系统有点东西赶海捕鱼:别人干一天我一网爆仓高武:我有个自助流异能风流人生从打工开始冰山女总裁的全能保镖这些龙傲天真讨厌呀魅魔男妈妈才不想被强制爱都市之校园异能王我彩票中奖了,你们开始后悔了?问鼎青云:从退役功臣到权力之巅老家诡案密档执法变强,我灭门贵族世家人生半途之重生暴富圆梦李忘昔与往昔之旅权斗江湖路谜团,谜团天灾降临:契约异灵女皇亿哥带你,钓遍天下鱼江晓白的成长之旅直播种田女相纵横蓝星村,蓝星从此乱纷纷悸动的心跳胜过千言万语我一个流量明星,会写歌怎么了?从进山打猎到富可敌国被病娇财阀老婆绑走,我笑哭了全球首富从美女机器人卖身契开始大一刚入学,你单挑三千同学?寒门枭主