西陆书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

欧叶进入答辩会现场,将她的博士论文投影到屏幕上。

“弗拉蒙特教授,努曼伯格教授,汉克斯教授,下午好。”欧叶礼貌的说到,瞟了眼旁听席的沈奇和林登施特劳斯。

主答辩官弗拉蒙特教授是一张扑克脸,他不苟言笑的说到:“欧,这是你的博士研究生第四学期。”

欧叶点点头:“是的。”

弗拉蒙特教授为人严厉,沈奇为欧叶捏了把汗。

不过欧叶入场之后发挥平稳,并没有虚,这是个好兆头。

弗拉蒙特教授:“欧,你的博士论文《耶斯曼诺维奇猜想的证明》,我们三位答辩官已看过,接下来将由你进行3到5分钟的陈述,然后我们会提问。”

欧叶:“好的。”

3到5分钟的陈述?沈奇有些意外,正常情况下博士研究生的开场陈述时间在15-20分钟之间。

林登施特劳斯扭头笑了笑,他的眼神告诉沈奇:我们很宽容,因人而异。

欧叶手持翻页笔,切换她博士论文的PPT

欧叶切到第3页:“这个,卢卡斯序列。”

欧叶在第4页不做停留,直接切到第5页:“这个,卢卡斯偶数,等价。”

PPT页码显示有101页,欧叶平均5秒钟过一页。

三位答辩官并未提出任何异议,就静静的看着欧叶飞快的刷PPT。

Power-Point,这是真正的PPT……沈奇从未见过如此简洁的PPT汇报,而PPT的精髓正是如此:强烈的观点。

制作PPT的要点在于突出每一页的重点,PPT汇报者在有限时间内须用最精炼的语言表达最强烈的观点。

欧叶的PPT表达精炼到极致,101页,她5分钟就陈述完毕,语言表达风格跟平常类似,只说重点不磨叽。

“OK,谢谢你的陈述,欧,接下来进入提问环节。”弗拉蒙特教授率先发问,他说到:“你刚才提到了卢卡斯序列,n(α,β)=α^n-β^n/α-β,其中n为正整数,这个定义没问题,这是前提。那么我要问的是,基于这个定义前提,如何反向求出un(α,β)的本原素除子?”

弗拉蒙特教授这个问题是个陷阱啊……沈奇已将欧叶的打印版论文过了一遍,反向求出un(α,β)的本原素除子是个逻辑陷阱,因为un(α,β)不具备本原素除子。

欧叶神志清醒反应灵敏,她答到:“无法求出。”

弗拉蒙特教授追问:“为什么?”

欧叶切换页,操作翻页笔的激光照射到un(α1,β1)=±un(α2,β2),并同步解释:“它不具备,本原素除子。”

“是吗?你确定?”弗拉蒙特教授继续追问。

“我确定。”欧叶无比坚定。

“下面由努曼伯格教授、汉克斯教授提问。”弗拉蒙特教授不再发问,他低头在答辩记录纸上写写画画。

努曼伯格教授长着一张圆脸,秃顶,笑眯眯像是个白人版的弥勒佛,他问到:“欧,关于引理1,我并不是太明白你取5≤n≤30且n≠6的依据是什么?”

“嗯。”欧叶早有准备,她切换页,这页引人注目的重点是方程(11):(2k+1)^x±(2k(k+1)))^y√-2k(k+1)=±(1±√-2k(k+1))^z

“给定正整数k,无z≥3的正整数解。”欧叶说到。

“OK,我暂时没有问题了。”努曼伯格教授低头记录,应该是在给欧叶打分。

第二个问题一问一答不过一分钟,但旁听的沈奇知道这个问题绝没有看上去那么简单。

如果(x,y,z)是方程(11)的正整数解,根据前提定义可知1+√-2k(k+1)与1-√-2k(k+1)形成卢卡斯偶数。

由方程(11)可得一个新方程,即欧叶论文中的方程(12),可以验证uz(1+√-2k(k+1),1-√-2k(k+1))没有本原素因子。

再由BHV定理可得,不存在z≥3的正整数解(x,y,z),回到前提定义,若使得un(α,β)不具有本原素除子,则n须取5≤n≤30且n≠6。

逻辑上挺绕的,欧叶的回答“给定正整数k,无z≥3的正整数解”属于一锤定音的小结性质,她心中明白这个逻辑,才能用一句话总结由这个逻辑推导出的核心结论。

让欧叶长篇大论的讲出全套推导逻辑,那她得讲一整天。

好在这里是普林斯顿,而且三位答辩官事先研究过欧叶的论文,他们都是着名数学教授,一叶知秋,答辩人一两句关键答辩词就足以让三位答辩官给出分数。

这时由汉克斯教授发言:“我来说几句吧,欧,你证明了不存z≥3,即z要么为1要么为2,。而我基于瑞安原则计算出z可以取1或2,所以我认为你对耶斯曼诺维奇猜想的证明不成立。”

此问一出,欧叶惊呆了:“……”

沈奇惊呆了,瑞安原则什么鬼?

林登施特劳斯教授惊呆了,z必须为2,z只能为2不能取1!欧叶的结论是我确认过的,不会错的!

的条件满足,代入前面的式子,才能证明方程a^x+b^^z仅有整数解(x,y,z)=(2,2,,2),,即耶斯曼诺维奇猜想的完全证明成立。

或1,这个结论如果成立,将推翻欧叶的博士论文,耶斯曼诺维奇猜想依旧未能被完全证明,欧叶现在做的工作,和耶斯曼诺维奇本人几十年前的证明工作没有本质区别。

我努力了两年得来的成果不要被推翻呀!欧叶急了,脸色忽白忽红,她紧握双拳高声辩论:“汉克斯教授,请看我论文的第92页到101页,对于S中的任意(x,y,z)都存在唯一的有理数l满足代数整数环!在方程(22)的两边模2(n+1)得2∣x,再模2n(n+1)+1得4∣x,依此类推,的情况,所以z只能取2!”

欧叶忽然爆发,三位答辩官吓了一跳,汉克斯教授的笔不慎掉落地面。

“这……暴走的小叶子?”沈奇也受到惊吓,他从未见过欧叶如此激动,这大概是欧叶得病之后一口气说的最长的一段话,有理有据有真相,还挺6的。

最快更新阅读,请访问 请收藏本站阅读最新小说!

西陆书屋推荐阅读:重生之我真的是老婆粉重生毒师废女左苏苏重生之盛宠娱乐女王我在古代带孩子的苦逼生活高冷系男神:不主动,不拒绝带着空间在逃荒路上养崽开局错把李世民当大表哥十八岁当上剑仙正常吗重生女帝的传说小生不可续善命斩恶魂,我在都市学洗魂!超级小神农给重生的虐文女主当妈后躺赢了农门福女:厨神王妃很嚣张重生在权力中心四合院:我有一个万界城青木世界红楼管家媳妇快穿:打脸白眼狼后我暴富了天命卦师穿成黑化大佬的小心肝开局神话入侵,我强化出无上神装机长大人,别来无恙!在年代文里扮演锦鲤福气包都市至强者降临坐我车的都是业界大佬一个网红的自我修养太子妃靠乌鸦嘴福运满满重生之骄兰信仰守护者金融弟国从乡村种田开始直播豪门暖婚之全能老公在下壶中仙开局获得轩辕剑,成就剑仙传奇名门暖婚,腹黑总裁攻妻不备蚀骨危情:陆少,别来无恙高调二婚重生九零之她成了人类首富娱乐:大学生演大佐,建议查三代和神仙青梅女友的超甜日常我渣了萧总后跑路了华娱之这个顶流要上网处处惹桃花:美男齐上钩爱情从再见开始绝世小神农遇见爱情的苏小姐繁星点点亮了从煤老板到工业大佬另谋高嫁:表姑娘休想退婚
西陆书屋搜藏榜:重生之我真的是老婆粉重生毒师废女左苏苏重生之盛宠娱乐女王我在古代带孩子的苦逼生活高冷系男神:不主动,不拒绝带着空间在逃荒路上养崽开局错把李世民当大表哥十八岁当上剑仙正常吗重生女帝的传说小生不可续善命斩恶魂,我在都市学洗魂!超级小神农给重生的虐文女主当妈后躺赢了农门福女:厨神王妃很嚣张重生在权力中心四合院:我有一个万界城青木世界红楼管家媳妇快穿:打脸白眼狼后我暴富了天命卦师穿成黑化大佬的小心肝开局神话入侵,我强化出无上神装机长大人,别来无恙!在年代文里扮演锦鲤福气包都市至强者降临坐我车的都是业界大佬一个网红的自我修养太子妃靠乌鸦嘴福运满满重生之骄兰信仰守护者金融弟国从乡村种田开始直播豪门暖婚之全能老公在下壶中仙开局获得轩辕剑,成就剑仙传奇名门暖婚,腹黑总裁攻妻不备蚀骨危情:陆少,别来无恙高调二婚重生九零之她成了人类首富娱乐:大学生演大佐,建议查三代和神仙青梅女友的超甜日常我渣了萧总后跑路了华娱之这个顶流要上网处处惹桃花:美男齐上钩爱情从再见开始绝世小神农遇见爱情的苏小姐繁星点点亮了从煤老板到工业大佬另谋高嫁:表姑娘休想退婚
西陆书屋最新小说:修仙红包群校花始终如一,因为她是我未婚妻赶海后,我靠着龙珠日赚百万开局泡在水中求生今天开始做自己,小小赘婿的逆袭都重生了谁还做渣男啊使魔时代:我的使魔来自地府我打工翻身,多情怎么了?开局出轨被分手我逆天的人生穿越七十年代倒江湖一天一异火,十天屠神,百天无敌兵王闯职场,艳遇不断兵王开饭店,娇俏闻味来我有无限技能属性点,恶魔只能跪最弱御兽?反手进化神话品质神豪:还有一万亿,让我先花完高武:道德绑架?给你两拳!写小说能提现?我上传了黑客小说林峰的复仇与觉醒明星塌房?我都废墟了还塌?六零:单身汉梦缘知青女北风之恋让你打暑假工,你把地窟平推了?给你九个亿当神仙杨戬我不干从百事乐队走出来的唢呐神医狼陵王我的女友是宋雨琦初夏渲染秋凄凉文娱:从打造爆火女团开始封神全民转职:召唤丧尸穿越60年代的保定城觉醒钓鱼佬系统,成为万亿神豪东北往事,我叫林卫东胃癌晚期的我靠系统成为医学奇迹全民抽奖我全金,说我召唤师弱?融合了手机,我给自己充电修仙穿越六零改变家族命运魔法天才哥哥和他的工具人弟弟重生摆路边摊,城管催我快上班!她劈腿后,我植入了AI都市璀璨:邂逅星光高校难就业,影响我技校造航母?都市逐梦之旅途梦落少年时我是仙帝?我怎么不知道!武之信条恋曲悠扬离婚后前妻闺蜜疯狂追求我官场之顺势而为技能添词条,双职业奶妈井井有条