西陆书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

这番话从任何的学子的口中说出来,都多少有些不知好歹。

但这可是叶秋!

当他沉稳的话语配上一张清俊的脸庞,任何人都不会怀疑说这些话的真实性。

康德和拉波波特二人对视一眼,谁都没有说话,最后长长的叹了一口气,无不惋惜。

两个数学大拿心中很清楚,叶秋以后的前途不可限量,要是能够拜到他们的门下,那将会是一件天大的好事情。

但是活到了他们这种岁数,对于得失看得很开的,不想要拜师了,他们也不再强求。

陆晚晚和靳可竹、安娜三个女生在大礼堂里面呆着无趣,相约去逛街。

整个大礼堂里面就只剩下康德、叶秋、拉波波特、舒尔茨四个人。

四个人围在了桌子的旁边,有时候会聊着自己生活中遇到的琐事,有时候会聊着在数学中碰到等难题。

虽然叶秋和拉波波特、舒尔茨都是第一次见面,但是数学为他们搭建了一道十分美好的桥梁,让他们一见如故。

话语正酣,舒尔茨适时的提出来了一个问题。

“两位老师有一个问题,困惑了我很长时间了,叶秋兄弟你也帮忙参考一下。”

三个人齐刷刷的看向舒尔茨。

舒尔茨咳嗽了一声,便缓缓说道。

“最近我正在研究群论产生的历史,群论产生的历史之中有两个相对一样的置换群,但是是否能够出现一个n与n的质数相同,而后把置换群相互隔离?”

这个问题很是高深。

如果不懂得数学研究的人根本就不知道这个话到底在说什么。

叶秋听闻此言,闭上眼睛深深的陷入了沉思。

要弄明白舒尔茨的这个问题到底是什么意思,首先必须得明白群论产生的历史。

群论是法国数学家伽罗瓦的发明。

他用该理论,具体来说是伽罗瓦群解决了五次方程问题。

在此之前柯西阿贝尔等人也对群论作出了贡献,但是贡献有限,不能支撑后来的研究

最先产生的是n个文字的一些置换所构成的置换群,它是在研究当时代数学的中心问题即五次以上的一元多项式方程是否可用根式求解的问题时,经由j-l.拉格朗日、p.鲁菲尼、n.h.阿贝尔和e.伽罗瓦引入和发展,并有成效地用它彻底解决了这个中心问题。

某个数域上一元n次多项式方程,它的根之间的某些置换所构成的置换群被定义作该方程的伽罗瓦群。

1832年伽罗瓦证明了一元n次多项式方程能用根式求解的一个充分必要条件是该方程的伽罗瓦群为“可解群”,由于一般的一元n次方程的伽罗瓦群是n个文字的对称群sn,而当n≥5时sn不是可解群,所以一般的五次以上一元方程不能用根式求解。

伽罗瓦还引入了置换群的同构、正规子群等重要概念。应当指出,a-l.柯西早在1815年就发表了有关置换群的第一篇论文,并在此后的二十年间对置换群又做了很多工作。

至于置换群的系统知识和伽罗瓦用于方程理论的研究,由于伽罗瓦的原稿是他在决斗致死前夕赶写成的,直到后来才在c.若尔当的名着“置换和代数方程专论”中得到很好的介绍和进一步的发展。置换群是最终产生和形成抽象群的第一个最主要的来源。

在数论中,拉格朗日和c.f.高斯研究过由具有同一判别式d的二次型类,即f=ax^22bxycy^2,其中a、b、c为整数,x、y取整数值,且d=b^2-ac为固定值,对于两个型的"复合"乘法,构成一个交换群。

w.r.戴德金于1858年和l.克罗内克于1870年在其代数数论的研究中也引进了有限交换群。

以至有限群群论产生的历史是一个比较高深的数学问题。

数学家关心的是各元素间的运算关系,也即群的结构,而不管一个群的元素的具体含义是什么。举一个具体的例子,根据凯莱定理,任何一个群都同构于由群的元素组成的置换群。

于是,特别是对研究有限群来说,研究置换群就是一个重要的问题了。

如果能够彻底的解而开群论之间的运算关系,那么就可以把物理学和力学相结合起来。

通俗点来讲,如果真的能够解开了群论的历史影响,那么可以把力学和热量学相互转换。

就比如。

当一艘火箭发射在太空之中,本来又经历几万光年的时间才会抵达,抵达另外一颗星球。

但是只要进行力的互换,可能一秒钟或是一分钟就能够抵达下一个星球。

这是对人类利益是产生的一个极大的影响,如果真的能够不彻底的破解开立群论的历史问题,那么将是人类科技进步的一大步。

而这也就是目前舒尔茨所研究的问题。

叶秋咳嗽了一声,缓缓的说出自己的见解。

“要研究群论产生的历史影响,其实最关键的就是要懂得各个群论之间的相互力量转换,就比如a群论和b群论之间是否可以进行转换,但是转换的特定因素是什么?”

“此特定因素又可否在c群论和d群论之间转换?我化了一个特定的关系,是在此特定的关系是中a群论和b群论可以相互进行转换……”

不愧是天才,两个人聊天的时候毫无压力。

话没有说清楚,就能够明白对方的心意,舒尔茨直接把自己的转换故事写在了草稿纸上面,递给叶秋。

叶秋看着面前的转换公式长呼一口气。

这个这个转换公式十分复杂,他跳过了人们原有的逻辑,而是从一种杂乱无计的无章的逻辑入手。

叶秋不由得发出疑问。

“这个转换的公式并没有任何的逻辑,为什么可以成为a群论和b群论之间的支撑呢?”

“正是因为这个公式是杂毫无逻辑,所以才可以成为转换,从某种意义上来讲a群论和b群论之间本来就没有任何的关系和意义,我们如果非要找出一个特定的逻辑公式的话是找不出来的,还不如根据两个群论的特性找出一个杂乱无章的公式呢。”

舒尔茨本来就只是在发表自己的看法,可是这句话却给了自己极大的启发呢。

这样的公式转换是不是也可以运用在np完全问题中呢?

西陆书屋推荐阅读:我在高武当学神中学:我的同桌是个大美女深情被辜负,我掀桌子你们哭什么缠情私宠:尤物小妻潜上瘾碰到手就会变成女孩子是什么鬼穿成科举文中炮灰小锦鲤新世界,你好全网都是我和前男友的CP粉逆战合金股海纵横之超级散户我高启盛,握全球最顶尖科研成果四合院:年仅十八就让我养老?世界大杂烩,主角大乱斗又是百年破事精英:赠予希妄开局报复初恋,搅黄她婚礼祸水之妻港片:我手下有一群猛男前妻别担心,我已经考公上岸了我给地球修bug柯南世界里的巫师重生宠爱日常三分人七分鬼徒儿你无敌了,去下山吧!我在远东有个家异虫迷城:触手娘的养育手册升职当天老婆被人搂着出了酒店魔武天穹回家继承亿万家产重生后我只想苟着没想拯救世界啊你凭什么觉得我要一直帮你买单?重生18:从借钱炒期货开始暴富开局系统跑路,我反派背景通天全球抗议:谁让他满世界卖军火的超级渔场主战朱门这个世界的迷宫花样太少了红警系统,助我纵横诸天!乡村里的女人幸运古神事务所综影:从老师是高育良开始四合院:穿越何雨柱截胡唐艳玲全球资本家:从大学开始当首富重生之来到五百年后的天骄穿越八零一身恶名从御兽园开始婚后霸占娇妻你惹他干嘛,他见局长比亲爸还勤束手就情,总裁别太坏点道为止
西陆书屋搜藏榜:重生之我真的是老婆粉重生毒师废女左苏苏重生之盛宠娱乐女王我在古代带孩子的苦逼生活高冷系男神:不主动,不拒绝带着空间在逃荒路上养崽开局错把李世民当大表哥十八岁当上剑仙正常吗重生女帝的传说小生不可续善命斩恶魂,我在都市学洗魂!超级小神农给重生的虐文女主当妈后躺赢了农门福女:厨神王妃很嚣张重生在权力中心四合院:我有一个万界城青木世界四岁小太后:打小,就儿孙满堂!一岁觉醒,我为人族希望!红楼管家媳妇快穿:打脸白眼狼后我暴富了天命卦师穿成黑化大佬的小心肝开局神话入侵,我强化出无上神装机长大人,别来无恙!在年代文里扮演锦鲤福气包都市至强者降临坐我车的都是业界大佬一个网红的自我修养太子妃靠乌鸦嘴福运满满重生之骄兰信仰守护者金融弟国从乡村种田开始直播豪门暖婚之全能老公在下壶中仙开局获得轩辕剑,成就剑仙传奇名门暖婚,腹黑总裁攻妻不备蚀骨危情:陆少,别来无恙高调二婚最强渔夫:海岛奶爸重生九零之她成了人类首富娱乐:大学生演大佐,建议查三代和神仙青梅女友的超甜日常我渣了萧总后跑路了华娱之这个顶流要上网处处惹桃花:美男齐上钩魂穿废柴:我在蓝星做大圣爱情从再见开始绝世小神农
西陆书屋最新小说:穷奇在我身被全家当废物后,我神医的身份曝光了别人淘金按克,你淘金按吨?异常配送:北斗与南斗的千年账单都快退圈了,爆词条系统才加载完来到城市仙尊归来,再不上学就迟到了!我能将人变成恶魔!回归豪门后,和前任姑姑闪婚了云启未来异世终焉高武:从班级吊车尾到人族武圣!都市逆袭之我是隐形首富捡个女友回家过年!灵幻觉醒之重生我,嘴强王者,三寸肉舌喷杀神明全民:霉运缠身?全世界助我升级都市生活之振兴中医红颜洪福神只:我是大角鼠?!大佬家的小废材逆袭了古董商寻船日志妻叛:我跌入谷底再攀巅峰继承荒山:直接改造10A级景区心灵骇客:意识破晓每日抽卡三次,享受人生肆意山林生活日记抗战:八百无限战魂助我!回的去的家乡判官的现代生活抗鹰援朝:云爆弹洗地,亿万增幅跗骨之灵都回到58年了,我还不能躺平农民工的一生我有胜天半子buff,你敢惹我按理说学化学还要操控元素?人的一生应该怎么活被解除婚约,我无敌你后悔什么?小镇神仙开局成园长,我的动物们都成精了穿越时空特种兵重生1992圆梦之路神级投资系统:都市逆袭传奇末世觉醒:暗影之主穿越之红星闪耀从私吞千万亿舔狗金开始当神豪你告诉我这是小时候那个软糯青梅人生超级逆袭亮剑:拒绝加入!我要独立发展